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Motivations and Basic Problems

• Acoustic/seismic target(s) location, DOA est., tracking,
beamforming, classification, and separation are some
basic operations needed in various military applications
– Near-field: curved wavefront, localization by direct approach
– Far-field: planar wavefront, DOA estimation, cross-bearing of

DOA’s to obtain target location
– Single source vs. multiple sources
– Wideband signal: frequency-domain processing

• Theoretical “optimum” system performance analysis
– Cramér-Rao bound analysis: node geometry dependence, signal

dependence, other parameters
• Physical prop. of media:array coherency,unknown speed
• Communications vs.computations: Among/inside nodes
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Free-Space Single Source Signal Model
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Free-Space Single Source
Signal Model in Frequency-Domain

• Signal model in frequency-domain:
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Cramér-Rao Bound (CRB) Derivation

Fisher Information Matrix (complex form):
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Cramér-Rao Bound for Source Localization
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Traveling Target Scenario:
Cramér-Rao Bound Numerical Example
• Tracked vehicle signal, circular array of 5 sensors, space loss

inversely proportional to square of distance, 12 frames of 200
samples each at fs = 1KHz

• Unknown signal much more significant in range estimation, but
not significant in DOA estimation
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Target Localization Methods

• Two step closed-form method: Least-Squares (LS)
– Time-delay estimation and then target location estimation
– Suboptimal, relatively less costly in computation
– Time-delays are difficult to obtain for multiple targets

• New parametric method: Approximated ML (AML)
– Directly optimize location estimation
– Work with multiple sources: alternating projection method
– Frequency-domain processing

• Frequency domain signal model is only approximately true due to
the artifacts of the DFT, e.g., circular time shift

• Better frequency domain signal model as time-domain data sample
L increases

• In practice, L is limited by the moving target
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Single Target vs. Multiple Targets

• Single target:

– Grid-point search
– Refinement: interpolation, iterative gradient or direct

search
• Multiple targets:

– Alternating projection: sequence of single target parameter
search
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Alternating Projection (AP)
for Multi-Target Case

• Multi-parameter space issues
– cost, convergence, initial position estimate

• M = 2: Step 1:  

Step 2:  

Step 3:  

Step 4:  
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Indoor Convex Hull Experimental Results

AML LS

• Semi-anechoic room, SNR = 12dB
• Direct localization of an omni-directional loud speaker playing

the LAV (light wheeled vehicle) sound
• AML RMS error of 73 cm, LS RMS error of 127cm
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Outdoor Moving Target Experimental Results

AML LS

• Omni-directional loud speaker playing the LAV sound while
moving from north to south

• Far-field situation: cross-bearing of DOA’s from three subarrays
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Outdoor Single Source Experimental Results

AML LS

• Omni-directional loud speaker playing white noise sound
• Cross-bearing of DOA’s from three subarrays
• AML RMS error: 32cm (left) and 97cm (right)
• LS RMS error: 152cm (left) and 472cm (right)
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Indoor Two Sources Experimental Result

• Semi-anechoic room. One speaker plays LAV and another
speaker plays Dragon Wagon (light wheeled vehicle)

• Cross-bearing of DOA’s from three subarrays
• RMS error of 154cm (upper) and 35cm (lower)

• AML with alternating
projection

• LS method cannot
estimate the DOA of
multiple sources
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29 Palms Field Measurement Results (1)
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• Single Armored Amphibious Vehicle (AAV) traveling at 15mph
• Far-field situation: cross-bearing of DOA’s from two subarrays
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29 Palms Field Measurement Results (2)
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• Single tank traveling at 15mph
• Far-field situation: cross-bearing of DOA’s from two subarrays



18

Conclusions

• CRB analysis
– Provides mathematical model of opt. array performance
– Provides theoretical evaluation of sensor placement

• AML target localization
– Efficient with respect to the CRB
– Maximizes power in beam-steered beamformer
– Efficient multi-target algorithm by alternating

projection method
• Effective in experimental and field measurement data

– Direct localization via cross bearing
– Tracking of single target and two targets
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Future Directions

• Physical acoustic/seismic propagation channels
are complex

• Acoustic/seismic signal fields are mildly/strongly
inhomogeous/non-isotropic among sensor nodes

• Most military scenarios have multiple targets
• We propose to study/find optimum/near optimum

and robust localization/beamforming algorithms
for multiple targets under the above constraints

• We will address the important autonomous
cluster formation of nodes and the minimal
density of nodes/unit area problems
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